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Abstract. For a 4He liquid surface, we derive an analytical form of the ripplon dispersion
relation considering surface diffusiveness. The diffusiveness reduces the ripplon frequency
for a 4He liquid with an abrupt surface. Comparison of our dispersion curve with the recently
measured spectrum gives the width of the diffusiveness and surface tension. Using the dispersion
relation and applying the Atkins theory, we can explain well the measured surface tension in
the temperature range from 0 K to Tλ = 2.17 K.

Surface vibrations of a4He liquid have been investigated in recent years. Among recent
research, an important contribution has been made by Lauteret al [1]. They have measured
the energy loss spectrum of inelastically scattered neutrons from4He thin liquid films on
a graphite substrate. They have directly observed, for the first time, the ripplon dispersion
relation at 0.65 K. The results show a lower dispersion curve than a simple dispersion
curve ωk =

√
σ/ρk3/2 whereσ is surface tension andρ is the mass density. Edwards

et al [2] have derived a softened dispersion relation including an effect of the curvature
dependence of the surface tension. For a certain choice of two parameters, their dispersion
curve, however, exhibits an anomalous curve resulting in a divergent group velocity of the
ripplon. On the basis of a density functional theory, Dalfovoet al [3] have derived the
ripplon dispersion curve which deviates from data observed by Lauteret al [1].

Concerning the temperature dependence of the surface tensionσ(T ) = σ(0) + δσ (T ),
Atkins [4] has proposed for the first time that the ripplon is responsible for it. Assuming
that the ripplon dispersion relation isωk =

√
σ/ρk3/2, Atkins [4] has derived theT 7/3

dependence ofδσ (T ) at sufficiently low temperatures. In the course of calculations, the
integral overk has been carried out from 0 to infinity. At finite temperatures, however,
this procedure is unrealistic. Because an infinitek means an infinitesimal wavelength, an
excess number of ripplon modes is counted. Moreover, an expansion factorT 4/3—as a
leading term ofT 7/3 and following terms ofT 11/3, T 15/3, . . .—results in slow convergence.
Zinov’eva and Boldaev [5], Eckardtet al [6] and Iino et al [7] have measuredδσ (T ).
Results by Eckardtet al [6] and Iino et al [7] are consistent. Though several kinds of
theory have been proposed to explainδσ (T ), none of them have obtained a quantitative
δσ (T ) in a wide range of temperature less thanTλ = 2.17 K. Some researchers [8–10]
have considered the effect of Bose–Einstein condensation that induces superfluidity. On the
basis of a density functional method, Pricaupenko and Treiner [11] have derived the ripplon
dispersion relation andδσ (T ). Using a variational method, Gernoth and Clark [12] also
have derived these quantities. Thoseδσ (T ), however, begin to deviate from the measured
data asT increases.

0953-8984/98/4510135+06$19.50c© 1998 IOP Publishing Ltd 10135



10136 A Tamura

In addition to this problem, the value of the surface tension atT = 0 K is in controversy
even now. Among measured data, 354.4µJ m−2 measured by Iinoet al [7] had been thought
to be the most accurate. Recently, Rocheet al [13] have measured the value as 375µJ m−2

that is close to the value 378µJ m−2 measured by Eckardtet al [6]. Here we clarify this
uncertainty by calculatingδσ (T ).

To investigate the validity of a proposed theory for analysing the ripplon, it is necessary
to check three quantities: the dispersion relation, the temperature dependence of surface
tension and the surface tension atT = 0 K. The purpose of the present report is, by
introducing surface diffusiveness, to derive these quantities.

Since the ripplon is localized near the surface, the effect of surface diffusiveness on the
ripplon frequency is important. Here we set the density distribution of a liquid film to be a
type of Fermi–Dirac distribution:

ρ(r‖, z) = ρd

1+ exp{[z− η(r‖)]/d} (1)

whered is related to the thickness of surface diffusiveness,r‖ is a position vector parallel
to the surface,z is a vertical position taken from the bottom plane andη(r‖) represents
a distance from the bottom plane to a point on the diffusive surface. We expand the
displacement ofη(r‖) from an equilibrium heighth as

η(r‖) = h+
∑
k

α∗k exp(ik · r‖) = h+ δη (2)

where coefficientsα∗k represent normal coordinates. By expanding equation (1) around
d = 0, we find

ρ(r‖, z) = ρd [θ(η(r‖)− z)− (π2/6)d2δ′(z− η(r‖))+ · · ·] (3)

whereθ(x) represents the step function, and a prime above a delta-function represents the
derivative with respect toz. The first term denotes the constant density with an abrupt
surface. To lowest order inδη and first order ind2, we find an expression for the density
as

ρ(r‖, z) = ρd [θ(h− z)− ε(π2/6)d2δ′(z− h)+ · · ·] (4)

whereε means an expansion parameter. Hereafter, a dot above a variable represents the
derivative with respect to time.

To define the diffusivenessd, we introduce the following density withδη = 0:

ρd(z) = ρd

1+ exp[(z− h)/d]
. (5)

By setting the thickness of the diffusivenessD to be a distance between two sites at which
ρd = 0.9ρd and 0.1ρd , respectively, we findd = D/4.4. The ρ(r‖, z) of equation (4)
should not be taken literally as the real density. It behaves as a weighting function with
which a physical quantity is integrated over a certain region. Such an integrated quantity
is non-singular. A typical example of this kind is the internal energy of free electrons at
finite temperatures. It has an additional term proportional to(kBT )

2 [14].
At first we assume that the liquid is incompressible. Then the equation of continuity

becomes∇ · v = 0. We assume further that the liquid is irrotational. The flow velocity,
therefore, is written as the gradient of a velocity potentialχ :v = ∇χ . Since the velocity
potentialχ satisfies the Laplace equation∇2χ = 0, the solution can be written as

χ(r, t) =
∑
k

c∗k(t) exp(ik · r‖)[exp(kz)+ exp(−kz)]θ(z)θ(h− z). (6)
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Because the vertical velocities∂χ/∂z and η̇(r‖) should be continuous at the surface, we
find ck = [2k sinh(kh)]−1α̇k.

We define the kinetic energy for the ripplon as

K = 1

2

∫
ρ(r‖, z)|∇χ(r, t)|2 dr ≡ K0+ εK1+O(ε2). (7)

By usingρ(r‖, z) of equation (4) andχ(r, t) of equation (6), we obtain

K0 = ρdA0

∑
k

k sinh(2kh)|ck|2 (8)

whereA0 represents the surface area of the liquid film in the equilibrium state. In the same
way, we findK1 as follows.

K1 = (2π2/3)d2ρdA0

∑
k

k3 sinh(2kh)|ck|2. (9)

These calculated results lead us to a final expression for the kinetic energy:

K = K0+ εK1 = 1

2
ρdA0

∑
k

[1+ ε(2π2/3)d2k2]

k tanh(kh)
|α̇k|2 (10)

and the canonical momentumπk is defined as

πk = ∂K

∂α̇k
= ρdA0

[1+ ε(2π2/3)d2k2]

k tanh(kh)
α̇∗k. (11)

The coefficientρdA0[1 + ε(2π2/3)d2k2]/[k tanh(kh)] in the right-hand side represents an
effective mass associated with the liquid flow. The mass becomes large with the increase
in the diffusiveness.

Neglecting the effect of gravity and considering the enlarged surface area during surface
vibrations, we find the potential energy as

V = 1

2
σ(T )

∫
dr‖|∇η|2 = 1

2
σ(T )A0

∑
k

k2|αk|2 (12)

whereσ(T ) represents the surface tension at a temperatureT .
From the kinetic energy of equation (10) and the potential energy of equation (12) we

arrive at a Hamiltonian for the ripplon as follows.

H = 1

2

∑
k

{
k tanh(kh)

ρdA0[1+ (2π2/3)d2k2]
|πk|2+ σ(T )A0k

2|αk|2
}

(13)

where the expansion parameterε is put equal to 1. Thus we obtain an analytical expression
for the frequency as

sω
2
kd =

σ(T )

ρd

k3

[1+ (2π2/3)d2k2]
tanh(kh). (14)

If d = 0 andkh� 1, we reproduceωk =
√
σ/ρk3/2. Hereafter, we labelsωkd asω.

In the experiments carried out by Lauteret al [1], the average distance between
neighbouring layers is about 3.3̊A, andh of the liquid films are larger than 5.0̊A. Thus,
in the rangek > 0.4 Å−1, a term tanh(kh) is set to be 1 in equation (14). In thisk-range
the velocity fieldv is localized near the surface, and we can regard the ripplon as that of a
semi-infinite liquid having the mass densityρd .

To determine the diffusivenessD, we transform equation (14) into

k

ω2
= ρd

σ (T )

[
1

k2
+ 2π2

3

(
D

4.4

)2]
(15)
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Figure 1. Scaled datakω−2 as a function ofk−2. A thick line represents the fitted line for
measured data of both 3.06 layer and 4 layer films.

where tanh(kh) = 1. Figure 1 shows this dispersion relation in which the measured data
with k > 1.06 Å−1 are neglected. The reason for this is given below concerning the
maximum wave number of ripplons. Open circles refer to the data points for 3.06 layers
taken from Lauteret al [1], and crosses refer to the middle data points for 4 layers measured
by Clementset al [15]. In contrast to other films exhibiting large fluctuations, both data
of 3.06 and 4 layers clearly show a linear dependence on the abscissak−2. This linearity
justifies our dispersion relation of equation (14). Since two values 3.06 and 4 are very
close to integers, those films are thought to be almost saturated. A thick line shows a fitted
line—by the least squares method—to the measured data of both 3.06 layer and 4 layer
films: kω−2 = 0.006 82(k−2+2.39). From the value 2.39, we haveD = 2.65 Å. Clements
et al [16] have calculated the density profiles of liquid films and obtainedD = 2.7 Å that
agrees well with ourD. From the coefficient 0.006 82, we haveσ(0.65 K) = 365µJ m−2

by takingρd = ρB for simplicity. It should be emphasized that these values can be derived
only from the measured data through the analytical expression of equation (15). Figure 2
shows the dispersion relation of equation (14) with tanh(kh) = 1. Our dispersion curve
traces well the data of 3.06 layer and 4 layer films. In this way, the dispersion relation of
equation (14) applies well to a liquid film having an almost saturated top layer.

According to the Atkins theory, the surface free energy is written as

F = A0[σ(0)+ δσ (T )]. (16)

The first term shows surface tension at 0 K. The second term is defined as

δσ (T ) = kBT

2π

∫ km

0
ln[1− exp(−h̄ω/kBT )]k dk. (17)

Though the integration of equation (17) has been often carried out from 0 to∞, it gives
no quantitativeδσ (T ) except at sufficiently low temperatures. Here we set thekm to be
the maximum wavenumber associated with the minimum wavelength defined bykm = π/a
wherea is an interatomic distance. Thekm corresponds to the zone boundary of a system
having a symmetry of translationa. Here we puta = 2.96 Å derived for an interatomic
potential by Azizet al [17]. Karlos et al [18] has shown, by a Monte Carlo method, that
the pair correlation functiong(r) of a superfluid4He is equal to 1 atr = a.

Since the frequencyω includes surface tensionσ(0) + δσ (T ), we need to calculate,
with D = 2.65 Å, δσ (T ) self-consistently. Figure 3 showsδσ (T ) as a function ofT 7/3.
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Figure 2. Dispersion relation of the ripplon. Symbols show the data measured by Lauteret al
[1] and Clementset al [15].

Figure 3. Temperature dependence of surface tension. Solid curves show the self-consistent
solutions for equation (17).

In the range 0 K< T < 1.9 K our δσ (T ) with σ(0) = 375 µJ m−2 traces well the data
measured by Eckardtet al [6] and Iino et al [7]. Our result withσ(0) = 354.4 µJ m−2

slightly deviates from the measured data in the range less than 1.9 K. Thus we support
σ(0) = 375 µJ m−2 and theδσ (T ) measured by Eckardtet al [6] and Iino et al [7]. A
dashed line showsδσ (T ) calculated by Atkins [4] withωk =

√
σ/ρk3/2. The difference

from the measured data is great except at sufficiently low temperatures. A dash–dotted
curve shows the result calculated by Gernoth and Clark [12] and it underestimates−δσ (T )
at high temperatures.

Lauter et al [1] have measured the ripplon dispersion relation at 0.65 K. From our
calculated result ofδσ (T ), we obtainδσ (0.65 K) = 372µJ m−2. The data measured by Iino
et al [7] readσ(0.65 K) = 352µJ m−2. As is shown in the paragraph below equation (15),
the surface tension estimated from the measured data isσ(0.65 K) = 365 µJ m−2. The
value 372µJ m−2 is closer to this estimated value.

In the above treatment, a4He liquid is assumed to be incompressible. Extension to
the case of a compressible liquid is straightforward. In that case we take account of the
coupling between ripplons and phonons located near the surface. To derive a Hamiltonian
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of the ripplon, we consider that the restoring force is composed of two factors: surface
tension and compressibility of the liquid. For a semi-infinite liquid with an abrupt surface,

we have the frequencycωk0 satisfying cω
2
k0 = (σ/ρd)k

2ν0, whereν0 =
√
k2− (cω2

k0/u
2)

andu is the speed of sound. This expression is the same as that derived by Garcı́a-Moliner
and Flores [19]. Thecω2

k0 can be expanded as

cω
2
k0 =

σ(T )

ρd
k3− 1

2u2

[
σ(T )

ρd

]2

k4+O(k5) (18)

and cω
2
k0 is softened because of the coupling with phonons. In the case of a diffusive

surface, we find the frequencycωkd defined by

cω
2
kd =

u2(k2− ν2
d )

2

(k2+ ν2
d )[1+ (2π2/3)d2ν2

d ]
+ 2σ(T )k2ν3

d

ρd(k2+ ν2
d )[1+ (2π2/3)d2ν2

d ]
(19)

whereνd =
√
k2− (cω2

kd/u
2). The cω

2
kd can be expanded as

cω
2
kd =s ω

2
kd

{
1− sω

2
kd

2u2k2[1+ (2π2/3)d2k2]
+ · · ·

}
. (20)

Comparing withcωk0 of an abrupt surface, the softening induced by the coupling with
phonons is suppressed mainly by a term [1+(2π2/3)d2k2]. Decrease in the frequency from
sωkd amounts to a few per cent ofsωkd , which does not yield an appreciable change in
δσ (T ) obtained withsωkd . In summary, the coupling with phonons has little contribution
to the ripplon frequency. We can extend the present treatment to a compressible liquid film.
Details of deriving these quantities will be reported elsewhere.

Our treatment is based on classical hydrodynamics and our results show that the temper-
ature dependence of surface tension is independent of the superfluidity of4He; all 4He atoms,
irrespective of whether they are normal liquid or superfluid, contribute to surface tension.
Thus, the quantum effect is thought to be included implicitly in the surface diffusiveness.
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