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Abstract. For a“He liquid surface, we derive an analytical form of the ripplon dispersion
relation considering surface diffusiveness. The diffusiveness reduces the ripplon frequency
for a“He liquid with an abrupt surface. Comparison of our dispersion curve with the recently
measured spectrum gives the width of the diffusiveness and surface tension. Using the dispersion
relation and applying the Atkins theory, we can explain well the measured surface tension in
the temperature range froO K to 7, = 2.17 K.

Surface vibrations of 4He liquid have been investigated in recent years. Among recent
research, an important contribution has been made by Latutd{1]. They have measured
the energy loss spectrum of inelastically scattered neutrons fkenthin liquid films on
a graphite substrate. They have directly observed, for the first time, the ripplon dispersion
relation at 0.65 K. The results show a lower dispersion curve than a simple dispersion
curve wy = /o /pk®? whereo is surface tension ang is the mass density. Edwards
et al [2] have derived a softened dispersion relation including an effect of the curvature
dependence of the surface tension. For a certain choice of two parameters, their dispersion
curve, however, exhibits an anomalous curve resulting in a divergent group velocity of the
ripplon. On the basis of a density functional theory, Dalf@toal [3] have derived the
ripplon dispersion curve which deviates from data observed by Latitair[1].

Concerning the temperature dependence of the surface tem6ion= o (0) + §o (T),
Atkins [4] has proposed for the first time that the ripplon is responsible for it. Assuming
that the ripplon dispersion relation is, = /o/pk®?, Atkins [4] has derived ther’/3
dependence ofo (T) at sufficiently low temperatures. In the course of calculations, the
integral overk has been carried out from 0 to infinity. At finite temperatures, however,
this procedure is unrealistic. Because an infikitmeans an infinitesimal wavelength, an
excess number of ripplon modes is counted. Moreover, an expansion fftferas a
leading term of7'7/3 and following terms off *¥/3, 7153 —results in slow convergence.
Zinov'eva and Boldaev [5], Eckardtt al [6] and lino et al [7] have measuredo (T).
Results by Eckardet al [6] and lino et al [7] are consistent. Though several kinds of
theory have been proposed to expldm(7), none of them have obtained a quantitative
30(T) in a wide range of temperature less thgn= 2.17 K. Some researchers [8-10]
have considered the effect of Bose—Einstein condensation that induces superfluidity. On the
basis of a density functional method, Pricaupenko and Treiner [11] have derived the ripplon
dispersion relation ando (T). Using a variational method, Gernoth and Clark [12] also
have derived these quantities. ThdegT), however, begin to deviate from the measured
data asT increases.
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In addition to this problem, the value of the surface tensiofi at 0 K is in controversy
even now. Among measured data, 364J nT2 measured by linet al [7] had been thought
to be the most accurate. Recently, Roehal [13] have measured the value as 375 m 2
that is close to the value 378J n2 measured by Eckardit al [6]. Here we clarify this
uncertainty by calculatingo (T').

To investigate the validity of a proposed theory for analysing the ripplon, it is necessary
to check three guantities: the dispersion relation, the temperature dependence of surface
tension and the surface tension At= 0 K. The purpose of the present report is, by
introducing surface diffusiveness, to derive these quantities.

Since the ripplon is localized near the surface, the effect of surface diffusiveness on the
ripplon frequency is important. Here we set the density distribution of a liquid film to be a
type of Fermi—Dirac distribution:

Ld
1+ exp{lz — n(rp]/d}
whered is related to the thickness of surface diffusivenessis a position vector parallel
to the surfacez is a vertical position taken from the bottom plane ap@),) represents
a distance from the bottom plane to a point on the diffusive surface. We expand the
displacement ofy(r) from an equilibrium height: as

N =h+ Y ofexplik-r) =h+én )
k

p(ry,z) = 1)

where coefficientsr; represent normal coordinates. By expanding equation (1) around
d =0, we find

p(ry, 2) = pald((ry)) — 2) — (w%/6)d?8 (z — n(ry) + - -] (3)

wheref (x) represents the step function, and a prime above a delta-function represents the
derivative with respect tq. The first term denotes the constant density with an abrupt
surface. To lowest order oy and first order ind2, we find an expression for the density

as

p(ry,2) = pal0(h — z) — e(?/6)d?*8' (z — h) + - -] 4)

wheree means an expansion parameter. Hereafter, a dot above a variable represents the
derivative with respect to time.
To define the diffusiveness, we introduce the following density witby = 0O:

Pd
1+ explz —h)/d]’ ®)

By setting the thickness of the diffusiveneBsto be a distance between two sites at which

pa = 0.9p; and Qlp,, respectively, we findl = D/4.4. The p(r|, z) of equation (4)
should not be taken literally as the real density. It behaves as a weighting function with
which a physical quantity is integrated over a certain region. Such an integrated quantity
is non-singular. A typical example of this kind is the internal energy of free electrons at
finite temperatures. It has an additional term proportionakid)? [14].

At first we assume that the liquid is incompressible. Then the equation of continuity
becomesV - v = 0. We assume further that the liquid is irrotational. The flow velocity,
therefore, is written as the gradient of a velocity potengiab = V x. Since the velocity
potential y satisfies the Laplace equatiéity = 0, the solution can be written as

X(r 1) =" cp(t) explik - ry)[exp(kz) + exp(—k2)]0(2)0 (h — z). (6)
k

pa(z) =
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Because the vertical velocitigly /dz and () should be continuous at the surface, we
find ¢, = [2k sinh(kh)]Lay,.
We define the kinetic energy for the ripplon as

1
k=3 / p(ry, DIV (r.n’dr = Ko + £K1 + O(?). )
By using p(ry, z) of equation (4) and, (r, t) of equation (6), we obtain
Ko = paAo ) _ ksinh2kh)|cx|? (8)
k

whereAg represents the surface area of the liquid film in the equilibrium state. In the same
way, we findK; as follows.

K1 = (27%/3)d’pgAo Y _ k*sinh(2kh)|ck . 9)
k
These calculated results lead us to a final expression for the kinetic energy:
1 [1+e(2n?/3)d%?], . ,
K=K K1 = =psA 10
o+ eKi=2p ozk: Ktanhi) levg| (10)
and the canonical momentumny, is defined as
K 1+ e(272/3)d%k?] .,
T = = Pd 0[ ( /<) ]Olk~ (11)

C da k tanh(kh)
The coefficientpys Ag[1 + &(272/3)d?k?]/[k tanh(kh)] in the right-hand side represents an
effective mass associated with the liquid flow. The mass becomes large with the increase
in the diffusiveness.

Neglecting the effect of gravity and considering the enlarged surface area during surface
vibrations, we find the potential energy as

1 1
V=30l / dry|Vn|? = Eo(T)AoijkﬂakF (12)

whereo (T) represents the surface tension at a temperature
From the kinetic energy of equation (10) and the potential energy of equation (12) we
arrive at a Hamiltonian for the ripplon as follows.

1 ktanh(kh) 2 9 12
H== T) Aok 13
5 ;{pdAO[H g ™+ o (D Ak (13)
where the expansion parameteis put equal to 1. Thus we obtain an analytical expression
for the frequency as
, o(T) K3
) =
ST pe 1+ (2n2/3)d%?]
If d =0 andkh > 1, we reproducey, = /o /pk?. Hereafter, we labelw,; asw.
In the experiments carried out by Lautet al [1], the average distance between
neighbouring layers is about 38 and s of the liquid films are larger than 54. Thus,
in the rangek > 0.4 A~1, a term tanlkh) is set to be 1 in equation (14). In thisrange
the velocity fieldv is localized near the surface, and we can regard the ripplon as that of a
semi-infinite liquid having the mass density.
To determine the diffusiveneds, we transform equation (14) into

k— pa |1 272/ D \?
pRa [ﬁ ¥ T(ﬂ) } (19)

tanh(kh). (14)
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Figure 1. Scaled data&o 2 as a function ofk—2. A thick line represents the fitted line for
measured data of both 3.06 layer and 4 layer films.

where tankkh) = 1. Figure 1 shows this dispersion relation in which the measured data
with k¥ > 1.06 A1 are neglected. The reason for this is given below concerning the
maximum wave number of ripplons. Open circles refer to the data points for 3.06 layers
taken from Lauteet al [1], and crosses refer to the middle data points for 4 layers measured
by Clementset al [15]. In contrast to other films exhibiting large fluctuations, both data
of 3.06 and 4 layers clearly show a linear dependence on the abscissd his linearity
justifies our dispersion relation of equation (14). Since two values 3.06 and 4 are very
close to integers, those films are thought to be almost saturated. A thick line shows a fitted
line—by the least squares method—to the measured data of both 3.06 layer and 4 layer
films: kw2 = 0.006 83k~2+ 2.39). From the value 2.39, we have = 2. 65 A. Clements
et al [16] have calculated the density profiles of liquid films and obtaibeg 2.7 A that
agrees well with ouD. From the coefficient 0.006 82, we hawg0.65 K) = 365 nJ m 2
by taking p; = pp for simplicity. It should be emphasized that these values can be derived
only from the measured data through the analytical expression of equation (15). Figure 2
shows the dispersion relation of equation (14) with {@ah = 1. Our dispersion curve
traces well the data of 3.06 layer and 4 layer films. In this way, the dispersion relation of
equation (14) applies well to a liquid film having an almost saturated top layer.

According to the Atkins theory, the surface free energy is written as

The first term shows surface tension at 0 K. The second term is defined as

km
50(T) = "ZB_NT/O IN[1 — exp(—fiw/ ks T)]k dk. (17)

Though the integration of equation (17) has been often carried out fromob, tih gives
no quantitativedo (T') except at sufficiently low temperatures. Here we setithdo be
the maximum wavenumber associated with the minimum wavelength definkd By /a
wherea is an interatomic distance. Thig, corresponds to the zone boundary of a system
having a symmetry of translatiom. Here we pute = 2.96 A derived for an interatomic
potential by Azizet al [17]. Karloset al [18] has shown, by a Monte Carlo method, that
the pair correlation functiog(r) of a superfluid*He is equal to 1 at = a.

Since the frequency) includes surface tension(0) + 8o (T), we need to calculate,
with D = 2.65 A, 80 (T) self-consistently. Figure 3 shows (T) as a function ofr /3.
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Figure 2. Dispersion relation of the ripplon. Symbols show the data measured by Letuaér
[1] and Clementst al [15].
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Figure 3. Temperature dependence of surface tension. Solid curves show the self-consistent
solutions for equation (17).

In the range 0 K< T < 1.9 K our 8o (T) with ¢(0) = 375 uJ n? traces well the data
measured by Eckardit al [6] and lino et al [7]. Our result witho (0) = 3544 uJ nm?
slightly deviates from the measured data in the range less than 1.9 K. Thus we support
0(0) = 375 uJ mi 2 and thedo (T) measured by Eckardit al [6] and linoet al [7]. A
dashed line showso (T) calculated by Atkins [4] withw, = /o/pk*2. The difference
from the measured data is great except at sufficiently low temperatures. A dash—dotted
curve shows the result calculated by Gernoth and Clark [12] and it underestim&i€s’)
at high temperatures.

Lauter et al [1] have measured the ripplon dispersion relation at 0.65 K. From our
calculated result afo (T), we obtainso (0.65 K) = 372xJ n 2. The data measured by lino
et al [7] reado (0.65 K) = 352 1J 2. As is shown in the paragraph below equation (15),
the surface tension estimated from the measured daig@0$5 K) = 365 uJ mr2. The
value 372uJ m? is closer to this estimated value.

In the above treatment, #He liquid is assumed to be incompressible. Extension to
the case of a compressible liquid is straightforward. In that case we take account of the
coupling between ripplons and phonons located near the surface. To derive a Hamiltonian
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of the ripplon, we consider that the restoring force is composed of two factors: surface
tension and compressibility of the liquid. For a semi-infinite liquid with an abrupt surface,
we have the frequencywo satisfyingcw?, = (o/pa)k?vo, Wherevy = /k2 — (cwZy/u?)

andu is the speed of sound. This expression is the same as that derived bg-Glatmer

and Flores [19]. Thew?, can be expanded as

2
2 o(T) 4 1 [o(T) 4 5
= kK ——|—=| K"+ 0k 18
Wio =~ - 22 | o + O(k>) (18)
and Ca),fo is softened because of the coupling with phonons. In the case of a diffusive
surface, we find the frequengyy, defined by
) u?(k? — v3)? 20 (T)k*v3

— + 19
“Pha = g2 VI + (272/3)d2v3]  pa(k? + v2)[1 + (272/3)d?v?] (19)
wherev,; = /k2 — (cw?,/u?). The w?, can be expanded as
2 2 11 ks + (20)
Wr; =s @ — I
¢kd S Thd 2u2k?[1 + (212/3)d?k?]

Comparing with.wyo of an abrupt surface, the softening induced by the coupling with
phonons is suppressed mainly by a term-[Rr2/3)d?k?]. Decrease in the frequency from
swrg @amounts to a few per cent @éy,, Which does not yield an appreciable change in
80 (T) obtained withswi,. In summary, the coupling with phonons has little contribution

to the ripplon frequency. We can extend the present treatment to a compressible liquid film.
Details of deriving these quantities will be reported elsewhere.

Our treatment is based on classical hydrodynamics and our results show that the temper-
ature dependence of surface tension is independent of the superfluithty adll *He atoms,
irrespective of whether they are normal liquid or superfluid, contribute to surface tension.
Thus, the quantum effect is thought to be included implicitly in the surface diffusiveness.
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